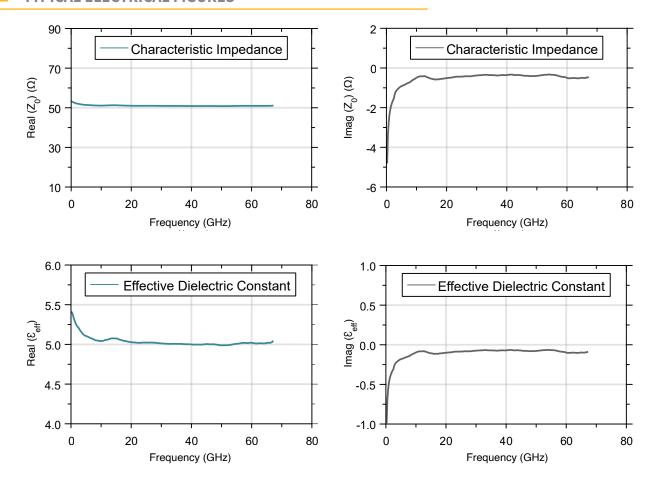

TCS-G55G-0150-0200 Calibration Substrate

The MPI TITAN™ TCS-GSSG-0150-0200 Dual Calibration Substrate is designed to provide accurate probe tip calibration of MPI TITAN™ RF probes with ground-signal-signal-ground (GSSG) tips and the standard's layout is optimized implementing recommendations developed by the PlanarCal Consortium of twelve European organizations^[1]. It supports the industry standard Short-Open-Load-Thru (SOLT/TOSM) calibration method, as well as advanced Thru-Match-Reflect (TMR/LRM), Thru-Match-Reflect-Reflect (TMRR) and the NIST multiline Thru-Reflect-Line (mTRL) calibrations.


The TCS-GSSG-0150-0200 contains the full set of coplanar transmission lines for mTRL calibrations up to 140 GHz.

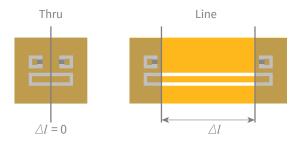
Two opposing GSSG TITAN™ Dual Probes in separation after touching the Thru (Adj Load) Standard and using 10 µm vertical over-travel

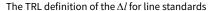
The unique approach of terminating idle RF probe ports by an Adjacent Load element implemented for MPI's TCS dual calibration substrates family drastically improves calibration accuracy at the mmW frequency range^[2].

TYPICAL ELECTRICAL FIGURES

SUBSTRATE CHARACTERISTICS

Material	Alumina
Size	16.7 mm x 12.7 mm
Thickness	254 μm
Design or standards	Coplanar
Probe configuration	GSSG
Supported probe pitch	150 to 200 μm
Number of calibration and verification lines	3
Calibration verification elements	yes
Supported calibration methods	TOSM (SOLT), TMR, LRM, SOLR, TMRR, TRL and mTRL
Typical resistance of the load	50 Ω
Typical load trimming accuracy error	± 0.3 %
Open standard	Au pads on substrate
Recommended overtravel for TITAN™ probes	10 μm


ELECTRICAL CHARACTERISTICS OF CPW LINE STANDARDS

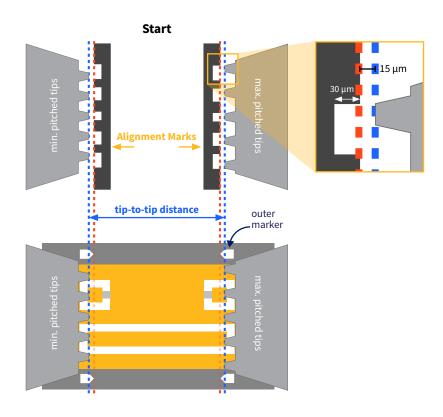

Nominal capacitance per unit length, pF/cm	1.465
Nominal characteristic impedance @20 GHz	50 Ω
Effective dielectric constant @20 GHz, real part	5.07
Velocity factor @20 GHz	0.444
Parameters of the simplified model of line losses	
Reference loss, dB	0.12
Reference delay, ps	10
Reference frequency, GHz	30
Electrical length of line, ps	
Thru (Adj Load)	5.63
Thru (Adj Load) 1 (0201,0206)	8.26
Thru (Adj Load) 2 (0301,0306)	13.37
Thru (Adj Load) 3 (0401,0406)	28.54
Dual Thru (0103, 0104, 0203, 0204)	5.70
Vertical Thru (0502 - 0505)	1.78

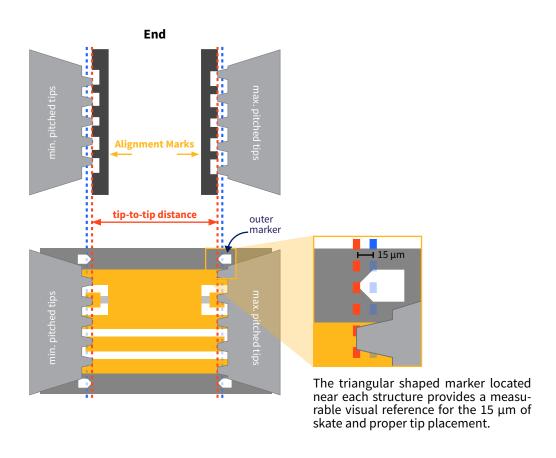
CALIBRATION ACCURACY USING NIST MULTILINE THRU-REFLECT-LINE (mTRL) PROCESS

The mTRL calibration kit can be easily designed and fabricated using the same semiconductor process as the DUT. Customized "On-wafer" mTRL calibration kits eliminate the need for de-embedding the DUT measurement results from parasitic impedances of the device contact pads. The mTRL is the only method that delivers trustable calibration results at measurement frequencies above 220 GHz.

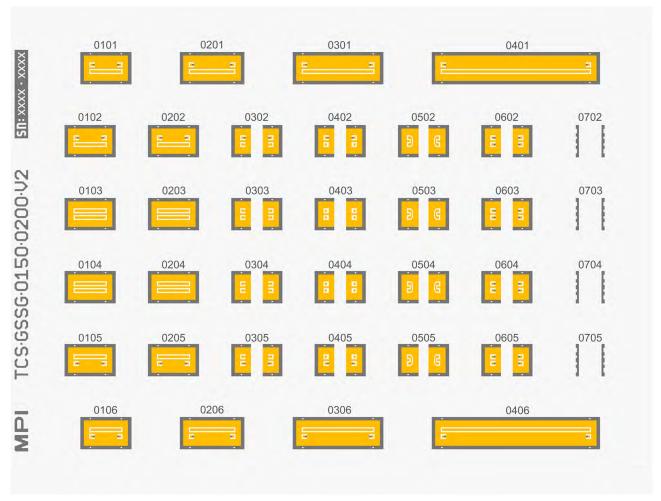
The mTRL algorithm requires multiple Line standards of different physical lengths and always treats the first Line (the "Thru") standard as a zero-length line. As a result, the length of each subsequent Line standard, Delta-I, is defined with respect to the length of the Thru (the first line).

The MP80-DX MicroPositioner with the digital micrometer on the X axes.

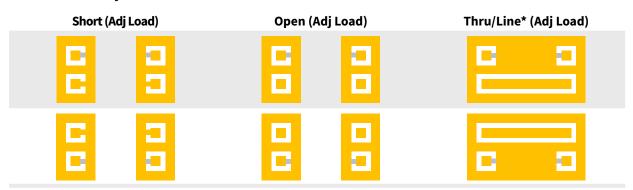

Standard type, (Name)	Physical length, μm	Effective length l, μm	Δl, μm
Thru (Adj Load)	800	750	0
Thru (Adj Load) Line 1 (0201,0206)	1150	1100	350
Thru (Adj Load) Line 2 (0301,0306)	1830	1780	1030
Thru (Adj Load) Line 3 (0401,0406)	3850	3800	3050


PROBE TIP POSITIONING AND ALIGNMENT MARKS

Consistent and accurate placement of the probe tips on calibration structures is critical for accurate and repeatable system calibration. The MPI TITAN™ TCS calibration substrate simplifies correct probe-tip-to-structure-alignment by providing special pre-alignment structures for the end user. The pre-alignment structures (Alignment Marks) enable the user to contact the Short, Open, Load and Thru structures in the correct location for consistent calibration results. For the Short, Open and Load, correct alignment is at the middle of each pad (Y-axis or relative to the direction of probe tip skate). For the Thru/Line elements, the correct alignment is 10-15 µm inward from each end of line so the two opposing probes are apart by the specified distance that corresponds to the effective length of the element.


The unique saw-tooth like Alignment Marks (structures # 0702-0705) and cone-shaped Outer Marker found on the TCS calibration substrate are designed for proper probe-tip-to-calibration-structure edge adjustment. The edge of the Alignment Marks (as highlighted by the red dashed line in Figure below) corresponds to the endpoint on a Short, Open, Load or Thru/Line structure when the proper amount of probe overtravel and resulting 10-15 μm of probe tip skate has been used. Skate begins from the moment the probe tips first make contact to the substrate (See the blue dashed line in Figure below) where initial tip contact should occur.

The operator should aim for and use the blue dashed line and cone of the Outer Marker as a visual reference/ starting point for $10-15~\mu m$ of probe tip skate. Minimal vertical overtravel (less than $20~\mu m$ typically) is needed so the tips skate from the blue dashed line (outside saw tooth opening) to the red dashed line (at the edge, but not into the saw tooth opening) as the stopping point. When done properly, two opposing probes are at the correct physical distance and rotational alignment when both are resting at the red dashed line in the example (at the edge of, but not inside, the saw tooth openings on the Alignment Marks).


SUBSTRATE LAYOUT

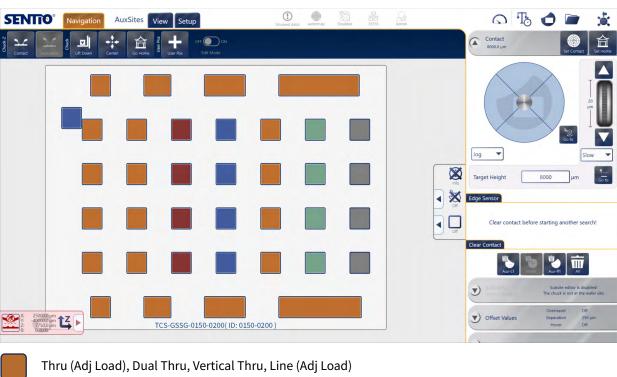
^{*}Location reference elements is 0102.

STANDARD ELEMENTS

Standards with adjacent loads

^{*}Lines: three choices of transmission lines provided, each with different physical and electrical lengths.

Dual standards


AUTOMATED NAVIGATION IN SENTIO®

SENTIO® probe station software from MPI Corporation is powerful Graphical User Interface (GUI) software to take your semiconductor testing to the next level. With unparalleled usability, multi-touch capabilities, and a customizable dashboard, SENTIO® software is designed to make your testing and microwave probe calibration processes more efficient and productive. Picture in Picture and QAlibria® inside provide advanced data analysis tools, while built-in intelligence streamlines your testing processes and keeps your probes and devices safe.

Connectivity and upgradability mean you're always connected and up to date with the latest features, while scalability ensures that SENTIO® software can grow with your business.

SENTIO® and QAlibria® integrate seamlessly with the structure mapping of your TCS calibration substrate, making standards navigation the calibration process automated and easy even for inexperienced operators.

The map of the TCS-GSSG-0150-0200 substrate in SENTIO®

Short (Adj Load), Dual Short

Open (Adj Load), Dual Open, Open on bare ceramic or in Separation

Dual Load

Alignment Mark

STANDARDS

Thru Standards with Adjacent Load							
Name	Type	X μm	Yμm	Spacing µm			
0102	Thru (Adj Load)	0	0	750			
0202	Thru (Adj Load)	2170	0	750			
0105	Thru (Adj Load)	0	-5700	750			
0205	Thru (Adj Load)	2170	-5700	750			
0101	Thru (Adj Load)	410	1900	750			
0106	Thru (Adj Load)	410	-7600	750			

Line Standards with Adjacent Load

Type	Xμm	Yμm	Spacing µm
Line1 (Adj Load)	3000	1900	1100
Line2 (Adj Load)	5940	1900	1780
Line3 (Adj Load)	9560	1900	3800
Line1 (Adj Load)	3000	-7600	1100
Line2 (Adj Load)	5940	-7600	1780
Line3 (Adj Load)	9560	-7600	3800
	Line1 (Adj Load) Line2 (Adj Load) Line3 (Adj Load) Line1 (Adj Load) Line2 (Adj Load)	Line1 (Adj Load) 3000 Line2 (Adj Load) 5940 Line3 (Adj Load) 9560 Line1 (Adj Load) 3000 Line2 (Adj Load) 5940	Line1 (Adj Load) 3000 1900 Line2 (Adj Load) 5940 1900 Line3 (Adj Load) 9560 1900 Line1 (Adj Load) 3000 -7600 Line2 (Adj Load) 5940 -7600

Short Standards with Adjacent Load

Name	Type	X μm	Y μm	Spacing µm
0302	Short (Adj Load)	4340	0	750
0305	Short (Adj Load)	4340	-5700	750

Open with Adjacent Load

Name	Type	X μm	Yμm	Spacing µm
0402	Open (Adj Load)	6510	0	750
0405	Open (Adj Load)	6510	-5700	750

Dual Calibration Standards

Name	Type	X μm	Yμm	Spacing µm
0103	Dual Thru	0	-1900	750
0104	Dual Thru	0	-3800	750
0203	Dual Thru	2170	-1900	750
0204	Dual Thru	2170	-3800	750
0303	Dual Short	4340	-1900	750
0304	Dual Short	4340	-3800	750
0403	Dual Open	6510	-1900	750
0404	Dual Open	6510	-3800	750
0602	Dual Load	10850	0	750
0603	Dual Load	10850	-1900	750
0604	Dual Load	10850	-3800	750
0605	Dual Load	10850	-5700	750

Vertical (Loop-Back) Thru Standards

Name	Type	X μm	Yμm	Spacing µm
0502	Vertical Thru	8680	0	750
0503	Vertical Thru	8680	-1900	750
0504	Vertical Thru	8680	-3800	750
0505	Vertical Thru	8680	-5700	750

Probe Alignment Elements

Name	Type	Xμm	Yμm	Spacing µm
0702	Alignment Mark	13020	0	750
0703	Alignment Mark	13020	-1900	750
0704	Alignment Mark	13020	-3800	750
0705	Alignment Mark	13020	-5700	750

CALIBRATION COEFFICIENTS FOR THE TITAN™ DUAL PROBES

GSSG Configuration

Pitch	Model	C-Open, fF	L-Short, pH	L-Term, pH
150 μm	26, 40 GHz, Standard	7.5	48	39
200 μm	26, 40 GHz, Standard	7.4	48	36

GSSG Configuration, for the Keysight VNA

		C-Open, fF	L-Short, pH		Load*	
Pitch	Model	C, fF	L, pH	R, Ohm	Offset Z ₀ , Ohm	Offset delay, ps
150 μm	26, 40 GHz, Standard	7.5	48	50	500	0.079
200 μm	26, 40 GHz, Standard	7.4	48	50	500	0.073

^{*}Use both offset impedance and offset delay parameters.

REFERENCES

- [1] M. Spirito, U. Arz, G. N. Phung, F. J. Schmückle, W. Heinrich, and R. Lozar, "Guidelines for the design of calibration substrates, including the suppression of parasitic modes for frequencies up to and including 325 GHz," in "EMPIR 14IND02 PlanarCal," Physikalisch-Technische Bundesanstalt (PTB), 2018.
- [2] H.-C. Fu, K. Jung. "Improve RF Dual Probe Calibration Accuracy with Peer-Terminated Standard", in 2024 IEEE / MTT-S International Microwave Symposium IMS 2024, Washington, DC, USA, 16-24 June, 2024.

See MPI Corporation's Terms and Conditions of Sale for more details.

Asia region: ast-asia@mpi-corporation.com
EMEA region: ast-europe@mpi-corporation.com
America region: ast-americas@mpi-corporation.com

MPI global presence: for your local support, please find the right contact here: www.mpi-corporation.com/ast/support/local-support-worldwide

